

Max. Marks: 720

Date: 21.10.2022

NEET 24 BATCH PHYSICS : PART TEST SET-B Topic: FLT

				Space for Rou	igh Wor	<u>·k</u>			
	(a)	100 J	(b)	200 J	(c)	300 J	(d)	250 J	
	displac	cement in 'metres',	then wor	k done will be					
7.	A part	icle moves from po	sition 3i	$+2\hat{j}-6\hat{k}$ to $14\hat{i}+1$	$3\hat{j} + 9\hat{k}$	due to a uniform force	e of (4i	$(\hat{j} + \hat{j} + 3\hat{k})$ N If the	
	(a)	2 N and 2 N	(b)	1 N and 1 N	(c)	1 N and 3 N	(d)	1 N and 4 N	
6.	Which	pair of the following	ng forces	will never give resul	tant forc	ce of 2 N			
	(a)	$2\hat{i}+\hat{j}-\hat{k}$	(b)	$-2\hat{i}+\hat{j}-\hat{k}$	(c)	$2\hat{i}-\hat{j}+\hat{k}$	(d)	$-2\hat{i}-\hat{j}-\hat{k}$	
	vector	along x-axis				č		-	
5.	What vector must be added to the two vectors $\hat{i} - 2\hat{j} + 2\hat{k}$ and $2\hat{i} + \hat{j} - \hat{k}$, so that the resultant may be a unit								
	(c)	$\sqrt{A^2 + B^2 - 2AI}$	$3\sin\theta$		(d)	$\sqrt{A^2 + B^2 + 2ABs}$	sin θ		
	(a)	$\sqrt{A^2 + B^2 + 2AB}$	$3\cos\theta$		(b)	$\sqrt{A^2 - B^2 + 2AB}$	$\cos \theta$		
4.	The va	lue of the sum of tw	vo vecto	rs \overrightarrow{A} and \overrightarrow{B} with θ a	as the an	gle between them is			
	(a)	$\sqrt{136}$	(b)	$\sqrt{13.2}$	(c)	$\sqrt{202}$	(d)	$\sqrt{160}$	
3.	Magni	tude of vector which	h comes	on addition of two ve	ectors, 6	$\hat{i} + 7\hat{j}$ and $3\hat{i} + 4\hat{j}$ is			
	(a)	0 m/s	(b)	16 m/s	(c)	4 m/s	(d)	8 m/s	
2.	A runn	er makes one lap a	round a 2	200 m circular track i	n 25 s. 🗅	The average speed of	the runn	er is	
	(c)	Instantaneous spe	ed		(d)	Uniform speed			
	(a)	Average speed			(b)	Acceleration			
1.	The sp	eedometer of a car	measure	S					

8. The angle between the vectors $\vec{a} = 3\vec{i} - 4\vec{j}$ and $\vec{b} = -2\vec{i} + 3\vec{k}$ is

(a)
$$\cos^{-1}\left(-\frac{1}{3}\right)$$
 (b) $\cos^{-1}\left(-\frac{1}{4}\right)$ (c) $\cos^{-1}\left(-\frac{1}{2}\right)$ (d) $\cos^{-1}\left(-\frac{1}{6}\right)$

9. When $\vec{A} \cdot \vec{B} = -|A||B|$, then

- (a) \vec{A} and \vec{B} are perpendicular to each other (b) \vec{A} and \vec{B} act in the same direction
- (c) \vec{A} and \vec{B} act in the opposite direction (d) \vec{A} and \vec{B} can act in any direction

10. What is the unit vector perpendicular to the following vectors $2\vec{i} + 2j - \hat{k}$ and $6\vec{i} - 3j + \hat{2}k$

(a)
$$\frac{\vec{i}+10j-18\hat{k}}{5\sqrt{17}}$$
 (b) $\frac{\vec{i}-10j+18\hat{k}}{5\sqrt{17}}$ (c) $\frac{\hat{i}-10j-18\hat{k}}{5\sqrt{17}}$ (d) $\frac{\vec{i}+10j+18\hat{k}}{5\sqrt{17}}$

11. Assertion: The familiar equation mg = R for a body on a table is true only if the body is in equilibrium. Reason: The equality of mg and R has no connection with the third law.

- (a) Both assertion and reason are true and the reason is the correct explanation of assertion
- (b) Both assertion and reason are true but reason is not the correct explanation of assertion
- (c) Assertion is true but reason is false
- (d) Both assertion and reason are false
- 12. A block of mass 4 kg lies over a horizontal surface ($g = 10 \text{ m/s}^2$). The normal reaction between the block and the surface is
 - (a) 10 N (b) 30 N (c) 40 N (d) 1 N
- 13. A uniform rope of length L lies on a table. If the coefficient of friction is μ, the maximum fractional length of the hanging part of the rope from the edge of the table without sliding down is:
 - (a) L/μ (b) $L/\mu + 1$ (c) $\frac{\mu}{\mu + 1}$ (d) $\frac{\mu L}{\mu + 1}$

A block of weight 100 N is lying on a rough horizontal surface. If the coefficient of friction is $1/\sqrt{3}$, the least 14. possible force that can move the block is:

- 100 $100\sqrt{3}$ $50\sqrt{3}$ (c) (b) (d) 50 N (a) $\sqrt{3}$
- Kinetic friction is always: 15.

A.	Less than static friction	B.	Greater than rolling friction
(a)	Both A and B are true	(b)	Both A and B are false
(c)	A is false and B is true	(d)	B is false and A is true

- 16. A man wants to remain in equilibrium by pushing his hand and feet against two vertical parallel walls as shown in the figure.
 - A. He must exert equal forces on both walls
 - Β. The forces of friction at both walls must be equal
 - C. The coefficients of friction between man and wall must be the same at both ends
 - D. Friction must be present on both walls

- (a) A and B are correct
- (c) A and B are correct

(b) A and C are correct All correct

Space for Rough Work

(d)

17. A body of weight 20 N is on a horizontal surface, minimum force applied to pull it when applied force makes an angle 60° with horizontal (angle of friction $a = 30^{\circ}$) is

- (a) 20 N (b) $20\sqrt{3}$ N (c) $\frac{20}{\sqrt{3}}$ N (d) 30 N
- 18. Of the following, self adjusting force is
 - (a) Static friction(b) Normal force(c) Tension in a string(d) All

19. A horizontal force F acts on the block of mass m and the block remains stationary, the value of friction force is

- (a) μ mg (b) μ mg F (c) F (d) Zero
- 20. A block of mass m is placed in equilibrium on a moving plank. The maximum horizontal acceleration of the plank for $\mu = 0.2$ is:
 - (a) 2 m/s^2 (b) 3 m/s^2
 - (c) Depends on the mass m (d) None of these
- 21. A block of mass 3 kg is placed on a rough horizontal surface ($\mu_s = 0.4$). A force of 8.7 N is applied on the block. The force of friction between the block and floor is
 - (a) 8.7 N (b) 12 N (c) 10 N (d) Zero
- 22. The time taken by a block of wood, initially at rest to slide down a smooth inclined plane 9.8 m long (angle of inclination = 30°) is:

- 23. A block of mass 2 kg rests on a rough inclined plane making an angle of 30° with the horizontal. If $\mu_s = 0.6$, what is the frictional force on the block? (g = 9.8 m/s²)
 - (a) 9.8 N (b) 19.6 N (c) 14.7 N (d) 4.9 N
- 24. A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and the wall is 0.2. The weight of the block is

25. Three blocks of equal masses (each 3 kg) are suspended by weightless strings as shown. If the applied force is 100 N, then T_1 is equal to : (g = 10 m/s²)

26. Three blocks of masses 1 kg, 4 kg and 2 kg are placed on a smooth horizontal surface. If shown in the figure. Two horizontal forces 120 N and 50 N are applies on the system the acceleration of the system is

27. Three blocks are connected as shown in the figure on a horizontal frictionless table. If $m_1 = 1$ kg, $m_2 = 8$ kg, $m_3 = 27$ kg and $T_3 = 36$ N, T_2 will be

28. A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on the pulley by the clamp is given by

29. As shown in the figure, two equal masses each of 2 kg are suspended from a spring balance. The reading of the spring balance will be

Space for Rough Work

30. Two masses M and m are connected by a weightless string. They are pulled by a force F on a frictionless horizontal surface. The tension in the string will be

36.	Force F and density d are related as $F = \frac{\alpha}{\beta + \sqrt{d}}$ then the dimensions of α and β are								
	(a)	$M^{3/2}L^{-1/2}T^{-2}$, $M^{1/2}L^{-3/2}$ respectively			(b)	$M^{-3/2}L^{1/2}T^{-2}$, $M^{-1/2}L^{3/2}$ respectively			
	(c)	$M^{3/2}L^{-1/2}T^2$, $M^{-1/2}L^2$	^{3/2} respe	ctively	(d)	$M^{3/2}L^{1/2}T^{-2}, M^{1/2}L^{3/2}$	² respecti	vely	
37.	The dir	nensions of $\frac{a}{b}$ in the	e equati	on $P = \frac{a - t^2}{bx}$ where	P is pre	ssure, x is distance ar	nd t is tin	ne, are	
	(a)	$[M^{2}LT^{-3}]$	(b)	[MT ⁻²]	(c)	[LT ⁻³]	(d)	$[ML^{3}T^{-1}]$	
38.	If force	e, velocity and time	are take	en as fundamental qua	antities, t	find the dimensions o	f work.		
	(a)	FVT	(b)	FVT^2	(c)	F^0VT^{-1}	(d)	FV^2T^{-1}	
39.	An ath of 2 mi	lete completes one n n 20 s?	round of	a circular track of ra	idius R i	n 40 s. What will b	e his dis	placement at the end	
	(a)	Zero	(b)	2R	(c)	$2\pi R$	(d)	$7\pi R$	
40.	A whe displac	el of radius 1 me ement of the point of	etre roll	s forward half a re neel initially in contac	volution ct with th	on horizontal grou ne ground is	nd. Th	e magnitude of the	
	(a)	2π	(b)	$\sqrt{2}\pi$	(c)	$\sqrt{\pi^2 + 4}$	(d)	π	
41.	The vertice travelle	locity-time graph of ed by the body in 6 s	f a body s are res	moving in a straight pectively	line is sł	nown in the figure. T	he displa	acement and distance	
	$ \begin{array}{c} 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$								
	(a)	8 m, 16 m	(b)	16 m, 8 m	(c)	16 m, 16 m	(d)	8 m, 8 m	

42. In 1.0 s, a particle goes from point A to point B, moving in a semicircle of radius 1.0 m (see figure). The magnitude of the average velocity is

(a) 3.14 m/s (b) 2.0 m/s (c) 1.0 m/s (d) Zero

43. The ratio of the numerical values of the average velocity and average speed of a body is always

- (a) Unity (b) Unity or less (c) Unit or more (d) Less than unity
- 44. A 10 hr tour is made at an average speed of 40 kph. If during the first half of the distance the average speed of the bus was 30 kph, what was the average speed for the second half of the trip?
 - (a) 60 kph (b) 50 kph (c) 40 kph (d) 6 kph
- 45. A particle moving in a straight line covers half the distance with a speed of 3 m/s. The other half of the distance is covered in two equal time intervals with a speed of 4.5 m/s and 7.5 m/s respectively. The average speed of the particle during this motion is
 - (a) 4.0 m/s (b) 5.0 m/s (c) 5.5 m/s (d) 4.8 m/s

Date: 21.10.2022

NEET 24 BATCH CHEMISTRY : PART TEST SET-B Topic: FLT

				Space for Re	ough Wo	ork					
	(a)	8.5 g	(b)	10.5 g	(c)	11.52 g	(d)	1.152 g			
55.	Sodiu grams	m carbonate of 92 ^r s Na ₂ CO ₃ requires to	% purity o yield 1	y is used in the read gm of CaCO ₃	ction Na ₂	$\mathrm{CO}_3 + \mathrm{CaCl}_2 \rightarrow \mathrm{Ca}$	$CO_3 + 2$	NaCl. The number of			
	(a)	0.7	(b)	0.5	(c)	0.30	(d)	0.10			
54.	If 0.5	mol of BaCl ₂ is mix	xed with	0.2 mol of Na ₃ PO ₄ t	the maxin	num number of mole	s of Ba ₃	(PO ₄) ₂			
	(a)	8 g	(b)	16 g	(c)	32 g	(d)	24 g			
53.	The v	The weight of oxygen required to completely react with 27g of aluminium is									
	(a)	44 g	(b)	0.22 g	(c)	0.88 g	(d)	8.8 g			
52.	The r	The mass of carbon dioxide obtained when 2g of pure limestone is calcined is									
	(a)	84	(b)	22.4	(c)	42	(d)	11.2			
511	weigh	the first $C = 12, H = 1, O$	= 16)	iii, are required for	tomplet		5 or net				
51.	How	many litres of oxy	gen at S	TP. are required for	complet	e combustion of 39	g of ljai	id Benzene? (Atomic			
50.	(a)	Carbon	(b)	Oxygen	(c)	Fluorine	(d)	Neon			
50.	Whie	h of the following e	lement l	as the highest value	of electro	on affinity?					
	(a)	O > C > N > B	(b)	B > N > C > O	(c)	O > C > B > N	(d)	O > B > C > N			
49.	The c	orrect order of elect	tron affi	nity of B, C, N, O is							
	(a)	O < N < Cl < S	(b)	Cl > O > S > N	(c)	N < O < S < Cl	(d)	N = Cl > O = S			
48.	The c	orrect electron affin	ity orde	r of N, O, S, CI is:							
	(a)	–2.55 eV	(b)	-5.1 eV	(c)	-10.2 eV	(d)	+2.55 eV			
47.	The f	irst ionization poten	tial of N	la is 5.1 eV. The valu	ue of elec	tron gain enthalpy of	Na+ wil	l be			
	(a)	C>N>O>F	(b)	O>N>F>C	(c)	O > F > N > C	(d)	F > O > N > C			
46.	6. The correct order of second ionization potential of carbon, nitrogen, oxygen and fluorine is										

56.	The ratio of area covered by second orbital to the first orbital is									
	(a)	1:2	(b)	1:16	(c)	8:1	(d)	16:1		
57.	The ra	tio of highes	st possible wave	length to lowest poss	ible wav	elength of Lyman ser	ies is			
	(a)	4/3	(b)	9/8	(c)	27/5	(d)	16/5		
58.	A photon of wavelength 4×10^{-7} m strikes on metal surface, the work function of the metal being 2.13 ev. Then									
	kinetic	energy of e	mitted electron	is						
	(a)	3.093 ev	(b)	0.56 ev	(c)	2.97 ev	(d)	0.97 ev		
59. The number of nucleons in chlorine-37 is										
	(a)	17	(b)	20	(c)	54	(d)	37		
60.	The ratio of the energies of photons of 2000 Å to that of 4000 Å is									
	(a)	2	(b)	4.0	(c)	1/2	(d)	1/4		
61.	The su	b-energy lev	vel which can ac	commodate maximu	m numb	er of electrons with pa	arallel sp	in values is		
	(a)	4p	(b)	6s	(c)	3d	(d)	бр		
62.	Critica	l temperatu	re and critical pr	essure values of four	gases a	e given:				
	Gas	Critical	Critical]						
		Temp(K)	pressure(atm)							
	Р	5.1	2.2	-						
	Q	33	13	-						
	R	126	34	-						
	s	135	40	-						
	Which	of the gas/g	gases can be liqu	⊐ efied at 100 K and 5	0 atm?					
	(a)	S only	(b)	P only	(c)	R and S	(d)	P and Q		
63.	The d	e-Broglie w	avelength of a	tennis ball of mass	60g ma	oving with a velocity	y of 10m	n/s is approximately		
	(Planc	k's constant	$h = 6.63 \times 10^{-3}$	⁴ Js)						
	(a)	$10^{-33}m$	(b)	$10^{-31} m$	(c)	$10^{-16}m$	(d)	$10^{-25}{\rm m}$		

64. A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passing through the origin. The plots at different values of pressure are shown in Fig. Which of the following order of pressure is correct for this gas?

$$(Till) = (K)$$

(a) $p_1 > $	$p_2 > p_3 > p_4$	(b)	$p_1 = p_2 = p_3 = p_4$	(c)	$p_1 \! < \! p_2 \! < \! p_3 \! < \! p_4$	(d)	$p_1 < p_2 = p_3 < p_4$
--------------	-------------------	-----	-------------------------	-----	---	-----	-------------------------

65. Match the compression factor under different condition in Column I with its value in Column II

Column I	Column II				
A) Compressibility factor	1) 3/8				
(Z) for ideal gas					
B) Z for real gas at low p	2)(1 + pb/RT)	1			
C) Z for real gas at high p	3) 1				
D) Z for critical state	4) (1 - a/RTV)				
(a) A-3, B-4, C-2, D-1 (b)	A-1, B-2, C-4,	D-3 (c)	A-4, B-3, C-2, D-1	(d)	A-2, B-1, C-4, D-3

66. Correct statement among the given

- (a) Isotopes of an element have same physical properties
- (b) ${}_{6}^{14}$ C and ${}_{8}^{16}$ O are isobars
- (c) Volume of an atom is 10^5 times less than that of the nucleus
- (d) ${}_{1}^{1}$ H and ${}_{1}^{2}$ H occupy the same position in the periodic table.

67.	If the angular momentum of an electron is $\frac{h}{h}$, then the electron is in which Bohr's orbit of H-atoms?
	π

(a) 1st (b) 2nd (c) 3rd (d) 4th

68. The wave length of infinity line in Lyman series of H-Spectrum is

(a) $\frac{3R}{9}$ (b) R	(c) $\frac{R}{2}$	(d) $\frac{1}{R}$
--------------------------	-------------------	-------------------

71.

72.

73.

74.

- 69. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture 1:4. The ratio of number of their molecules is
 - (a) 1:8 (b) 3:16 (c) 1:4 (d) 7:32
- 70. Match the mass of elements given in column I with the no. of moles given in column II and mark the appropriate choice

Colu	mn I	Column II						
A) 28	3 g of He	i) 2 moles						
B) 46	6 g of Na	ii) 7 moles						
C) 60	g of Ca	iii) 1 mole						
D) 27	7 g of Al	iv) 1.5 moles						
(a)	$A \rightarrow iv, B$	\rightarrow iii, C \rightarrow ii, 1	$D \rightarrow i$	(b)	$A \rightarrow i, B \rightarrow ii$	i, C \rightarrow ii, D –	→ iv	
(c)	$A \rightarrow iii, B$	\rightarrow ii, C \rightarrow i, D	\rightarrow iv	(d)	$A \rightarrow ii, B \rightarrow i$, $C \rightarrow iv$, $D -$	→ iii	
The fi	rst ionizatior	n potential will l	e maximum for					
(a)	Lithium	(b)	Hydrogen	(c)	Uranium	(d)	Iron	
Which	n of the follo	wing represent	s the correct orde	er of increasi	ng first ionizati	on enthalpy f	for Ca Ba S	S Se and
AI?		ining represent			ing mot iomzati	on entitupy i	ior eu, bu, i	s, se ana
(a)	Ca < S < F	Ba < Se < AI		(b)	S < Se < Ca <	Ba < AI		
(c)	Ba < Ca <	AI < Se < S		(d)	Ca < Ba < S < Se < AI			
The ic	onisation ene	rgy and electror	affinity of an ele	ement are 13.	0 eV and 3.8 eV	/ respectively	. Its electror	negativity
is								
(a)	2.8	(b)	3.0	(c)	3.5	(d)	4.0	
If the	ionisation	energy and ele	ectron affinity o	of an elemen	t is 275 and	86 Kcals mo	ol ⁻¹ respecti	vely, the
electro	onegativity o	f that element o	n the Mulliken so	cale is				
(a)	2.8	(b)	0.0	(c)	4.0	(d)	1.9	

75.	Which	Which of the following is not the reason for the higher EA ₁ of halogens									
	I.	high nuclear charg	ge		II.	large atomic size					
	III.	Easy to get octet c	onfigura	tion, ns ² np ⁶	IV.	Half filled p-orbitals					
	The co	rrect answer is									
	(a)	I and IV	(b)	I, II and III	(c)	II and IV	(d)	II and III			
76.	On heating 4.9g of KClO ₃ , it shows a weight loss of 0.384g. What percentage of KClO ₃ has decomposed?										
	(a)	8.6 %	(b)	75 %	(c)	41.8 %	(d)	20 %			
77.	0.2 g mole of an unsaturated hydrocarbon on complete combustion produces 26.4 gm of CO_2 . The molecular weight of hydrocarbon is										
	(a)	42	(b)	88	(c)	46	(d)	30			
78.	For the reaction $X + 2Y \rightarrow Z$, 5 moles of X and 9 moles of Y will produce										
	(a)	5 moles of Z	(b)	8 moles of Z	(c)	14 moles of Z	(d)	4.5 moles of Z			
79.	How many Cs atoms can be converted to Cs^+ ions by1 joule energy if IE ₁ for Cs is 376 Kj mole ⁻¹										
	(a)	1.6×10^{18}	(b)	$1.6 imes 10^{10}$	(c)	$5.8 imes10^{14}$	(d)	$5.8 imes 10^{25}$			
80.	For C,	N, 0, and F, which o	of the fo	llowing orders is corr	ect for I	P?					
	(a)	F > O > C > N	(b)	O>F>N>C	(c)	F > N > O > C	(d)	N>F>O>C			
81.	Equal i conditi	masses of H_2 , O_2 an ons. The ratio of the	d metha e volume	ne have been taken ir es of gases H ₂ : O ₂ : n	a conta nethane v	iner of volume V at t would be:	emperat	ure 27°C in identical			
	(a)	16:8:1	(b)	16:1:2	(c)	8:1:2	(d)	8:16:1			
82.	What i	s the temperature a	t which	the kinetic energy of	0.3 mol	les of helium is equa	l to the l	kinetic energy of 0.4			
	moles	of argon at 400 K									
	(a)	400 K	(b)	873 K	(c)	533 K	(d)	300 K			
83.	The %	rise in temperature	needed t	to expand a gas by 40	% at cor	stant pressure is					
	(a)	20%	(b)	40%	(c)	60%	(d)	80%			

Date: 21.10.2022

NEET 24 BATCH BIOLOGY : PART TEST SET-B Topic: FLT

91.	Sweet	t potato is a modifi	ed								
	(a)	stem			(b)	adventitious roo	ot				
	(c)	taproot			(d)	rhizome.					
92.	Asser	Assertion: Presence of pneumatophores is a special adaptation of hydrophytes.									
	Reaso	Reason : Pneumatophores are positively geotropic shoots that have lenticels and help in gaseous exchange.									
	(a)	Both assertion a	nd reasor	n are true and reason	n is the cor	rect explanation o	f assertion.				
	(b)	Both assertion a	nd reasor	n are true but reasor	n is not the	correct explanation	on of asserti	on.			
	(c) Assertion is true but reason is false.										
	(d)	Both assertion a	nd reasor	n are false.							
93.	The n	The modified supporting roots called prop roots and stilt roots are seen respectively in									
	(i)	banyan and maize				banyan and sug	arcane				
	(iii)	maize and banyan			(iv)	sugarcane and maize					
	(a)	(i) only	(b)	(ii) only	(c)	(iii) only	(d)	(i) and (ii) only			
	(e)	(i) and (iv) only									
94.	Roots	Roots play insignificant role in absorption of water in									
	(a)	pea	(b)	wheat	(c)	sunflower	(d)	Pistia.			
95.	Stilt r	oots are found in									
	(a)	Rhizophora	(b)	maize	(c)	banyan	(d)	Colocasia.			
96.	The r	oots hanging from	the branc	thes of banyan tree	are						
	(a)	primary roots	(b)	fibrous roots	(c)	prop roots	(d)	pneumatophores			
97.	Whicl	h of the following i	is correct	ly matched?							
	(a)	Monstera - Fibro	ous root		(b)	Dahlia - Fasciculated root					
	(c)	(c) Azadirachta - Adventitious root				Basil - Prop roc	ots				
98.	Photo	synthetic roots are	found in								
	(a)	Mirabilis	(b)	Trapa	(c)	Vanda	(d)	Ficus.			

वित Knc Learning	ह्या ददाति वि powledge is Disc g with the	नयम् BJI e Speed of Mumbai and	VF the Tradi	tion of Kota				
99.	Stilt r	oots are found in						
	(a)	banyan	(b)	screw pine	(c)	mango	(d)	spinach.
100.	Select	t the correct statemer	nts.					
	(A)	From the region of	f elonga	ation, some of the epi	dermal	cells form root hairs	8.	
	(B)	Pneumatophores a	are seen	in Rhizophora.				
	(C)	Adventitious root	s are see	en in the banyan tree				
	(D)	Maize and sugarc	ane hav	e prop roots.				
	(a)	(A) and (D)	(b)	(A), (C) and (D)	(c)	(C) and (D)	(d)	(B) and (C)
	(e)	(A), (B) and (D)						
101.	Find t	he incorrect match.						
	(a)	Tap root: Carrot			(b)	Adventitious roo	t: Sweet p	otato
	(c)	Prop root: Banyar	n tree		(d)	Stilt root: Turnip)	
102.	The 'e	eyes' of potato are lo	cated at	the				
	(a)	root apex	(b)	leaf apex	(c)	nodes	(d)	inter-nodes
103.	In Bo	<i>ugainvillea</i> , thorns a	re the m	odifications of				
	(a)	adventitious root	(b)	stem	(c)	leaf	(d)	stipules.
104.	Select	t the mismatched pai	r out of	the following.				
	(a)	Rhizome - Dryop	teris, Ne	elumbo nucifera				
	(b)	Corm - Crocus sa	tivus, A	morphophallus				
	(c)	Sucker - Curcumo	a domes	tica, Zingiber officind	ale			
	(d)	Tuber - Helianthu	is tubero	osus, Solatium tubero	sum			
105.	Whic	h of the following is	not a st	em modification?				
	(a)	Tendrils of cucun	nber		(b)	Flattened structu	res of Opi	ıntia
	(c)	Pitcher of Nepenta	hes		(d)	Thorns of citrus		
106.	Stems	s modified into flat g	reen org	gans performing the f	unctions	s of leaves are know	n as	
	(a)	phylloclades	(b)	scales	(c)	cladodes	(d)	phyllodes.
107.	Leafy	green stems of limit	ted grov	wth modified to perform	rm phot	osynthesis are calle	d as	
	(a)	phyllode	(b)	phylloclade	(c)	cladode	(d)	foliar stipules.

108. In one plant, underground stems are modified to store food and in another plant, the stem tendrils develop from axillary buds to help plants climb. They are

	(a)	ginger, cucumber		carrot, jasmine		
	(c)	sweet potato, Bougainvillea	(d)	Opuntia, Eichhornia		
	(e)	sweet potato, mint.				
109.	An exa	mple of edible underground stem is				
	(a)	carrot (b) groundnut	(c)	sweet potato (d) potato.		
110.	Match	the plants in column I with their modification	n types in col	lumn II and choose the right options given below.		
		Column I		Column II		
	(A)	Ginger	(i)	Flattened stem		
	(B)	Pumpkin	(ii)	Thorns		
	(C)	Bougainvillea	(iii)	Stem tendrils		
	(D)	Opuntia	(iv)	Underground stem		
	(a)	(A)-(iv), (B)-(iii), (C)-(ii), (D)-(i)	(b)	(A)-(iv), (B)-(i), (C)-(ii), (D)-(iii)		
	(c)	(A)-(ii), (B)-(iv), (C)-(i), (D)-(iii)	(d)	(A)-(iii), (B)-(iv), (C)-(ii), (D)-(i)		
	(e)	(A)-(ii), (B)-(i), (C)-(iv), (D)-(iii)				
111.	In one interno	plant adventitious roots are modified for des and each node bearing a rosette of leaves	storage and s and a tuft of	I in the other plant a lateral branch with short f roots is found. They are		
	(a)	sweet potato and Pistia	(b)	Eichhornia and jasmine		
	(c)	carrot and mint	(d)	turnip and Chrysanthemum		
	(e)	sweet potato and mint.				
112.	Match approp	the vegetative propagules listed under co riate option from the given choices.	lumn I with	the plants given under column II. Choose the		
		Column I		Column II		
	A.	Rhizome	p.	Agave		
	B.	Offset	q.	Bryophyllum		
	C.	Sucker	r.	Ginger		
	D.	Leaf buds	s.	Chrysanthemum		
			t.	Eichhornia		
	(a)	A-r, B-t, C-s, D-q	(b)	A-r, B-s, C-p, D-q		
	(c)	A-q, B-p, C-t, D-s	(d)	A-s, B-t, C-q, D-r		

- 113. The plant of arid region that modifies its stem into a flattened structure with chlorophyll pigments to carry out photosynthesis is
 - (a) Euphorbia (b) Qpuntia (c) Citrus (d) Bougainvillea
 - (e) *Cohcasia*.
- 114. Cladode is
 - (a) a modified green stem capable of photosynthesis and usually one internode long
 - (b) a specialised reproductive shoot
 - (c) flattened green stem of unlimited growth
 - (d) a perennial fleshy underground stem.
- 115. The "eyes" of the potato tuber are
 - (a) root buds (b) flower buds (c) shoot buds (d) axillary buds.
- 116. Green leaf-like modified aerial stems/branches with a single internode are called
 - (a) bulbils (b) cladodes (c) phylloclades (d) phyllodes.
- 117. A tree that has strong erect stem with hollow internodes and solid nodes is known as
 - (a) caudex (b) deliquescent (c) scape (d) culm.
- 118. Which of the following plants have long slender and coiled stem tendrils developed from axillary buds?
 - (a) Grapevine and pumpkins (b) Australian *Acacia* and watermelon
 - (c) *Bougainvillea* and cucumber (d) Strawberry and grapevine
 - (e) *Alstonia* and pumpkins

119. Match the following and select the correct combination from the options given below.

	Column I		Column II
	(Stem Modifications)		(Found in)
A.	Underground stem	1.	Euphorbia
B.	Stem tendril	2.	Opuntia
C.	Stem thorns	3.	Potato
D.	Flattened stem	4.	Citrus
E.	Fleshy cylindrical stem	5.	Cucumber
(a)	A-l, B-2, C-3, D-5, E-4	(b)	A-2, B-3, C-4, D-5, E-1
(c)	A-3, B-4, C-5, D-l, E-2	(d)	A-3, B-5, C-4, D-2, E-1

(e) A-5, B-3, C-4, D-1, E-2

120.	Which	of the following is	the suba	erial stem modification	on with I	long intemode?		
	(a)	Rhizome	(b)	Offset	(c)	Runner	(d)	Sucker
121.	Examp	ble of corm is						
	(a)	ginger	(b)	Colocasia	(c)	onion	(d)	potato.
122.	The str	ructure which conta	in vascu	lar bundle and is mod	lificatior	n of stem is		
	(a)	bristles	(b)	thorn	(c)	prickle	(d)	spine.
123.	Which	one of the followin	ig is a m	odified stem that perf	forms ph	otosynthesis?		
	(a)	Tendrils	(b)	Bulbils	(c)	Phylloclades	(d)	Prickles
124.	Find o	ut the wrongly mate	ched pair					
	(a)	Tuber - Potato	(b)	Rhizome - Ginger	(c)	Bulbil - Agave	(d)	Leaf buds - Banana
	(e)	Offset - Water hya	acinth					

125. Identify the given diagrams and mark the correct option.

- (a) A, D are compound leaves while B, C are simple leaves.
- (b) A, D are simple leaves while B, C are compound leaves.
- (c) A, B are simple leaves while C, D are compound leaves.
- (d) A, B are compound leaves while C, D are simple leaves. (AIMS)

126. Match the following.

Column I

- A. Phyllode
- B. Phylloclade
- C. Adventitious food storage root
- D. Rhizome
- (a) A-(i), B-(iv), C-(iii), D-(ii)
- (c) A-(iii), B-(ii), C-(i), D-(iv)

Column II

- (i) Australian Acacia
- (ii) Curcuma
- (iii) Sweet potato
- (iv) Opuntia
- (b) A-(ii), B-(i), C-(iv), D-(iii)
- (d) A-(iv), B-(iii), C-(ii), D-(i)

Learning with the Speed of Mumbai and the Tradition of Kota Assertion: In opposite phyllotaxy two leaves are borne on the opposite sides of a single node. Reason : Opposite phyllotaxy is seen in China rose and oleander. Both assertion and reason are true and the correct explanation of assertion.

- Both assertion and reason are true but reason not the correct explanation of assertion. (b)
- Assertion is true but reason is false. (c)
- (d) Both assertion and reason are false.

128. Which of these plants has pinnately compound leaf at a node?

- Alstonia (b) Calotropis (c) Guava (d) Mustard (a)
- Neem (e)

127.

(a)

129. Leaf tendrils are found in

- (a) peas (b) cucumber (c) grapevine (d) all of these.
- 130. Consider the following statements.
 - A. In leguminous plants, leaf base becomes swollen, called pulvinus.
 - B. The fleshy leaves of onion and garlic store food
 - C. The buds in Australian Acacia tree become green and synthesise food.
 - D. In Alstonia, leaves show alternate phyllotaxy.
 - Of the above statements
 - B and D are correct A and C are correct (a) (b)
 - (c) A and B are correct (d) A and D are correct
 - (e) B and C are correct.

A-(i), B-(ii), c-(iii)

(e)

131. Match the modification in column I with the part modified in column II and choose the right option.

	Column I		Column II
A.	Pneumatophores in Rhizophora	(i)	Axillary buds
B.	Tendrils in pea	(ii)	Roots
C.	Thorns in <i>Citrus</i>	(iii)	Leaves
(a)	A-(ii), B-(i), C-(iii)	(b)	A-(iii), B-(i), C-(ii)
(c)	A-(iii), B-(ii), C-(i)	(d)	A-(ii), B-(iii), C-(i)

132. The pattern of arrangement of leaves on the stem is known as

	(a)	heterophylly	(b)	phyllode	(c)	phyllotaxy	(d)	phylloclade
133.	How n (oleand	nany plants among ler) have opposite pl	China hyllotax	rose, <i>Ocimum</i> , su y?	nflower, n	nustard, Alstonia, g	guava,	Calotropis and Nerium
	(a)	Three	(b)	Four	(c)	Five	(d)	Two
134.	Phyllo	de is present in						
	(a)	Asparagus	(b)	Euphorbia	(c)	Australian Acacia	(d)	Opuntia.
135.	Foliace	eous stipules are fou	nd in					
	(a)	rose	(b)	wild pea	(c)	castor	(d)	kadam.

136. The figures given below show the types of coelom. Identify them and select the correct group of organisms which possess them.

- A B
- (a) Annelids Aschelminthes Platyhelminthes
- (b) Molluses Arthropods Platyhelminthes
- (c) Echinoderms Aschelminthes Annelids
- (d) Echinoderms Arthropods Platyhelminthes

137.	Match the following	and select the correct	option from the	codes given below.
	U		1	0

Column I

- A. Physalia
- B. Meandrina
- C. Gorgonia
- D. Adamsia
- (a) A-(iii), B-(ii), C-(i), D-(iv)
- (c) A-(iv), B-(ii), C-(iii), D-(i)

- Column II
- (i) Sea anemone
- (ii) Brain coral
- (iii) Sea fan
- (iv) Portuguese man-of-war
- (b) A-(iv), B-(iii), C-(ii), D-(i)
- (d) A-(ii), B-(iii), C-(i), D-(iv)

138. Given below are three statements regarding Aschelminthes.

- (i) They are bilaterally symmetrical and triploblastic
- (ii) They are dioecious
- (iii) All are plant or animal parasites.

Select the option that has both the correct statements.

- (a) (i) and (ii) (b) (i) and (iii) (c) (ii) and (iii) (d) None of these
- 139. Identify the figures A, B, C and D given below and select the correct option.

- (a) A-Locust, B-Scorpion, C-Prawn, D-Pila (b) A-Locust, B-Prawn, C-Scorpion, D-Pila
- (c) A-Locust, B-Scorpion, C-Prawn, D-Snail (d) A-Butterfly, B-Scorpion, C-Prawn, D-Pila
- 140. In which one of the following, the genus name, its two characters and its phylum are not correctly matched?

	Genus name	Characters	Phylum
(a)	Pila	(i) Body segmented	Mollusca
		(ii) Mouth with radula	
(b)	Asterias	(i) Spiny skinned	Echinodermata
		(ii) Water vascular system	
(c)	Sycon	(i) Pore bearing	Porifera
		(ii) Canal system	
(d)	Periplaneta	(i) Joined appendages	Arthropoda
		(ii) Chitinous exoskeleton	

141. Read the given statements and select the correct option.Statement 1: Urochordates and cephalochordates are often called invertebrate chordates.

Statement 2: They are a connecting link between the invertebrates and the chordates.

- (a) Both statements 1 and 2 are correct
- (b) Statement I is correct but statement 2 is incorrect
- (c) Statement 1 is incorrect but statement 2 is correct
- (d) Both statements 1 and 2 are incorrect

- 142. In some chordates, the notochord is modified as the vertebral column. Such animals are called vertebrates. Which one of the following statements makes sense?
 - (a) All chordates are vertebrates but all vertebrates are not chordates
 - (b) All vertebrates are chordates and all chordates are vertebrates
 - (c) All vertebrates are chordates but all chordates are not vertebrates
 - (d) Chordates are not vertebrates and vertebrates are not chordates
- 143. The figure of Labeo rohita is given below. Identify the parts labelled as A, B, C, D and E.

	А	В	С	D	Е
(a)	Anal fin	Dorsal fin	Caudal fin	Pectoral fin	Pelvic fin
(b)	Anal fin	Caudal fin	Dorsal fin	Pectoral fin	Pelvic fin
(c)	Dorsal fin	Caudal fin	Anal fin	Pelvic fin	Pectoral fin
(d)	Dorsal fin	Caudal fin	Pectoral fin	Anal fin	Pelvic fin

- 144. Which of the following classes is incorrectly matched with its general characters?
 - (a) Cyclostomata: Lack jaws and paired fins and body is covered with placoid scales
 - (b) Osteichthyes: Four pairs of gills are covered with an operculum and skin is covered with cycloid scales
 - (c) Reptilia: Tympanum represents ear and fertilization is internal
 - (d) Aves: Endoskeleton is fully ossified and long bones are hollow with air cavities called as pneumatic bones
- 145. Which one of the following categories of animals, is correctly described with no single exception in it?
 - (a) All reptiles possess scales, have a three chambered heart and are cold blooded (poikilothermal)
 - (b) All bony fishes have four pairs of gills and an operculum on each side
 - (c) All sponges are marine and have collared cells
 - (d) All mammals are viviparous and possess diaphragm for breathing

146. Match column I with column II and select the correct option from the given codes.

	Column I		Column II
A.	Protochordata	(i)	Delphinus
B.	Limbless amphibian	(ii)	Myxine
C.	Oviparous mammal	(iii)	Omithorhynchus
D.	Aquatic mammal	(iv)	Doliolum
E.	Jawless vertebrate	(v)	Ichthyophis
(a)	A-(iv), B-(iv), C-(iii), D-(i), E-(ii)	(b)	A-(iv), B-(v), C-(iii), D-(i), E-(ii)
(c)	A-(iv), B-(v), C-(iii), D-(ii), E-(i)	(d)	A-(v), B-(iii), C-(i), D-(ii), E-(iv)

147. Identify the following simple epithelial tissues and select the correct option.

(d) Squamous Columnar Cuboidal Pseudostratified columnar (ciliated)

148. Which of the following statements about cell junctions are correct?

- (i) All the cells of the epithelium are held together with little intercellular materials
- (ii) In almost all animal tissues specialized junctions provide both structural and functional link between their individual cells
- (iii) Tight junctions prevent substances from leaking across a tissue
- (iv) Adhering junctions provide cementing to keep neighbouring cells together
- (v) Gap junctions provide cytoplasmic channels between cells for passage of ions, small molecules and sometimes big molecules
- (a) (ii) and (iii) (b) (i), (ii) and (iii)
- (c) (iv) and (v) (d) (i), (ii), (iv) and (v)

149. Which of the following statements is/are not correct regarding connective tissues?

- (i) They are most abundant and widely distributed in the body of complex animals
- (ii) They connect and support other tissues
- (iii) They include diverse tissues such as bones, cartilage, tendons, adipose and other loose connective tissues
- (iv) They form the internal and external lining of many organs
- (v) In all connective tissue except blood, the cells secrete fibres of structural proteins like collagen and elastin

(a) (iv) only (b) (v) only (c) (i) and (ii) (d) (iii) and (v)

150. Cartilage is formed by

- (a) chondrocytes (b) osteoblasts (c) osteoclasts (d) fibroblasts
- 151. In the given diagram of a section of hyaline cartilage, the different parts have been indicated by alphabets. Choose the answer in which these alphabets correctly match with the parts they indicate.

	А	В	C	D
(a)	Perichondrium	Chondrocyte	Lacuna	Capsular matrix
(b)	Blood vessel	Chondrocyte	Lacuna	Perichondrium
(c)	Matrix	Chondrocyte	Lacuna	Perichondrium
(d)	Matrix	Lucuna	Chondrocyte	Capsular matrix

152. Identify the figures A, B, C showing different types of muscle and select the correct option.

	A	В
(a)	Smooth muscle	Striated muscle
(b)	Cardiac muscle	Smooth muscle
(c)	Striated muscle	Smooth muscle
(d)	Involuntary muscle	Voluntary muscle

C Cardiac muscle Striated muscle Cardiac muscle Heart muscle

- (i) The epithelium of proximal convoluted tubule (PCT) of nephron in the kidney has microvili
- (ii) Simple epithelium covers the dry surface of the skin, the moist surface of buccal cavity, pharynx, inner lining of ducts of salivary glands and of pancreatic ducts
- (iii) The wall of internal organs such as the blood vessels, stomach and intestine contains skeletal muscle
- (iv) Bone marrow in some bones is the site of production of blood cells

	(i)	(ii)	(iii)	(iv)
(a)	Т	F	F	Т
(b)	F	F	Т	Т
(c)	Т	Т	F	F
(d)	Т	F	Т	F

154. Match column I with column II and select the correct option from the codes given below.

	Column I		Column II
A.	Simple columnar	(i)	Wall of heart epithelium
B.	Cardiac muscle	(ii)	Bone joints
C.	Adipose tissue	(iii)	Inner lining of stomach and intestine
D.	Hyaline cartilage	(iv)	Below the skin, int eh abdomen, buttocks, thighs and breasts
		(v)	Diaphragm
(a)	A-(iii), B-(i), C-(i), C-(ii), D-(i	v)	(b) A-(iii), B-(v), C-(ii), D-(iv)
(c)	A-(i), B-(iii), C-(iv), D-(v)		(d) A-(iii), B-(i), C-(iv), D-(ii)

- 155. Nervous tissue is made up of neurons and neuroglial cells. Which of the following statements about these two cells is/are false?
 - (i) Neuroglia make up more than one-half the volume of neural tissue in our body
 - (ii) Neuroglia protect and support neurons
 - (iii) When a neuron is suitably stimulated, an electrical disturbance is generated which swiftly travels along its cytosol
 - (iv) Arrival of the disturbance at the neuron's endings triggers stimulation or inhibition of adjacent neurons or other cells.
 - $(a) \quad (i) \text{ and } (iv) \qquad (b) \quad (ii) \text{ and } (iii) \qquad (c) \quad (iii) \text{ only} \qquad (d) \quad (iv) \text{ only}$

156. Which of the following figures shows the mandibles of cockroach?

157. The given figure shows alimentary canal of cockroach. Identify the parts labelled as A to D and select the correct option.

	Ì	A CAR
A B C		} }
D_		ЭĮ
AN AND	٠ <i>ي</i>	1

	А	В	С	D
(a)	Gizzard	Crop	Hepatic caecae	Malpighian tubules
(b)	Crop	Gizzard	Hepatic caecae	Malpighian tubules
(c)	Crop	Gizzard	Malpighian tubules	Hepatic caecae
(d)	Gizzard	Crop	Malpighian tubules	Hepatic caecae
Choos	e the incorrect p	air from the mate	ches given below.	
(a)	Antennae-Sens	sory receptors	(b)	Metathoracic wings-Flying

(c) Malpighian tubule-Excretion (d) Crop-Food grinding

158.

- 159. Select the correct statement from the ones given below with respect to Periplaneta Americana.
 - (a) Nervous system located dorsally, consists of segmentally arranged ganglia joined by a pair of longitudinal connectivies
 - (b) Males bear a pair of short thread like anal styles
 - (c) There are 16 very long Malpighian tubules present at the junctions of midgut and hindgut
 - (d) Grinding of food is carried out only by the mouth parts
- 160. Read the following statements about cockroach.
 - (i) In male cockroach, a characteristic mushroom shaped gland is present in the 6th-7th abdominal segments which functions as an accessory reproductive gland
 - (ii) Cockroach is uricotelic
 - (iii) The fat body and uricose glands are glandular in function
 - (iv) Blood from sinuses enter heart through ostia and is pumped anteriorly to sinuses again.

Which of the above statements are correct?

- (a) (i), (ii) and (iv) (b) (ii) and (iii) (c) (i) and (iv) (d) (ii) and (iv)
- 161. Study the given figure of reproductive system of male cockroach.

In which of the labelled parts are the sperms stored?

162. The development of Periplaneta Americana is

(a) holometabolous (b) paurometabolous (c) ametabolous	(d)	hemimetabolous
--	-----	----------------

- 163. Consider the following four statements (i) (iv) and select the correct option stating which ones are true (T) and which ones are false (F).
 - (i) In male cockroach, genital pouch or chamber lies at the hind end of abdomen bounded dorsally by 9th and 10th terga and ventrally by the 9th sternum.
 - (ii) In cockroach, the haemolymph is composed of colourless plasma and haemocytes.
 - (iii) In female cockroach each ovary is formed of a group of ten ovarian tubules or ovarioles, containing a chain of developing ova.
 - (iv) In cockroach the nymph grows by moulting about 13 times to reach the adult form.

	(i)	(ii)	(iii)	(iv)
(a)	F	Т	F	Т
(b)	F	F	Т	Т
(c)	Т	Т	F	Т
(d)	Т	F	Т	F

164. Which of the following is an agranulocyte?

- (a) Basophil (b) Neutrophil (c) Lymphocyte (d) Eosinophil
- 165. Find the correct descending order of percentage proportion of leucocytes in human blood.
 - (a) Neutrophils \rightarrow Basophils \rightarrow Lymphocytes \rightarrow Acidophils (Eosinophils) \rightarrow Monocytes
 - (b) Monocytes \rightarrow Neutrophils \rightarrow Lymphocytes \rightarrow Acidophils \rightarrow Basophils
 - (c) Neutrophils \rightarrow Lymphocytes \rightarrow Monocytes \rightarrow Acidophils \rightarrow Basophils
 - (d) Lymphocytes \rightarrow Acidophils \rightarrow Basophils \rightarrow Neutrophils \rightarrow Monocytes

167. Match the types of WBC listed under column I with the shape of nucleus given under column II and select the correct option from codes given below.

Column I

A. Neutrophils

- B. Eosinophils
- C. Basophils
- D. Monocytes
- (a) A-(iii), B-(v), C-(i), D-(ii)
- (c) A-(ii), B-(i), C-(v), D-(iii)

Column II

- (i) Kidney-shaped
- (ii) S-shaped
- (iii) 3 to 5 lobes
- (iv) 2 labes
- (v) Disc-shaped
- (b) A-(v), B-(iii), C-(i), D-(iv)
- (d) A-(iii), B-(iv), C-(ii), D-(i)

- 168. Which of the following statements is/are incorrect about lymph?
 - (i) Lymph is colourful as it has haemoglobin but no RBC.
 - (ii) It contains specialized lymphocytes which are responsible for immunity of the body.
 - (iii) Lymph is an important carrier for nutrients and hormones.
 - (iv) Fats are absorbed through lymph in the lacteals present in the intestinal villi.
 - (a) (i) only (b) (iii) and (iv) (c) (ii) and (iii) (d) (iv) onl;y
- 169. Pacemaker is situated in the
 - (a) wall of right atrium (b) interauricular septum
 - (c) interventricular septum (d) wall of left atrium
- 170. Read the following statements and select the correct option.
 - Statement 1: The SA node acts as pacemaker.

Statement 2: The SA node is located in the wall of the right atrium near the interatrial septum.

- (a) Both statements 1 and 2 are correct
- (b) Statement 1 is correct but statement 2 is incorrect
- (c) Statement 1 is incorrect but statement 2 is correct
- (d) Both statements 1 and 2 are incorrect
- 171. Read the following statements and select the correct ones.
 - (i) Nodal tissue is specialized cardiac musculature in human heart which has the ability to generate action potential due to an external stimuli.
 - (ii) Position of SAN-right corner of right atrium.
 - (iii) Position of AVN-right corner of ventricle.
 - (iv) AV bundle continues from AVN.
 - (v) Purkinje fibres are modified cardiac muscle fibres that originate from the atrioventricular node and spread into the two ventricles
 - (a) (i) and (ii) (b) (i) and (iii) (c) (ii), (iv) and (v) (d) All of these
- 172. During ventricular systole
 - (a) oxygenated blood is pumped into the pulmonary artery and deoxygenated blood is pumped into the artery
 - (b) oxygenated blood is pumped into the aorta and deoxygenated blood is pumped into the pulmonary vein
 - (c) oxygenated blood is pumped into the pulmonary vein and deoxygenated blood is pumped into the pulmonary artery
 - (d) oxygenated blood is pumped into the aorta and deoxygenated blood is pumped into the pulmonary artery

173. In the given figure the durations of the events of the cardiac cycle are given. Identify these events and select the correct option.

	А	В	С
(a)	Auricular systole	Joint diastole	Ventricular systole
(b)	Ventricular systole	Joint diastole	Auricular systole
(c)	Ventricular systole	Auricular systole	Joint diastole
(d)	Joint diastole	Auricular systole	Ventricular systole

- 174. Which of the following statement(s) regarding the cardiac system is/are correct?
 - (i) Human heart is an ectodermal derivative.
 - (ii) Mitral valve guards the opening between the right atrium and left ventricle.
 - (iii) SAN is located on the left upper corner of the right atrium.
 - Stroke volume × Heart rate = Cardiac output (iv)

(a) (i) only (b) (i) and (ii) (c) (ii) and (iii) (d) (iv) only

- 175. Which one of the following is a matching pair?
 - Lub-sharp closure of AV valves at the beginning of ventricular systole (a)
 - Dup-sudden opening of semilunar valves at the beginning of ventricular diastole (b)
 - (c) Pulsation of the radial artery-valves in the blood vessels
 - (d) Initiation of the heart beat-Purkinje fibres

176. Examine the diagrammatic representation of standard ECG. Select an option with correct matching.

T-wave

P-Wave

(a) Repolarisation of the atria Repolarisation of the ventricles Depolarisation of the atria

QRS complex

- (b) Depolarisation of the atria Depolarisation of the ventricles Repolarisation of the ventricles
- (c) Repolarisation of the ventricles Repolarisation of the atria Depolarisation of the ventricles
- (d) Depolarisation of the ventricles Depolarisation of the atria Repolarisation of the atria
- 177. Choose the schematic diagram which properly represents pulmonary circulation in humans.

(a)	Left auricle –	Deoxygenated	Lungs	Oxygenated	\rightarrow Right ventricle
-----	----------------	--------------	-------	------------	-------------------------------

- (b) Left auricle $\xrightarrow{\text{Oxygenated}}_{\text{blood}} \rightarrow \text{Lungs} \xrightarrow{\text{Deoxygenated}}_{\text{blood}} \rightarrow \text{Right ventricle}$
- (c) Right ventricle $\xrightarrow{\text{Deoxygenated}}_{\text{blood}}$ Lungs $\xrightarrow{\text{Oxygenated}}_{\text{blood}}$ Left auricle
- (d) Right ventricle $\xrightarrow{\text{Oxygenated}} \text{Lungs} \xrightarrow{\text{Deoxygenated}} \text{Left auricle}$
- 178. Consider the following four statements (i) (iv) and select the correct option.
 - (i) SA node is natural pacemaker of heart.
 - (ii) Human heart has inter-auricular foramen.
 - (iii) Right atrioventricular valve is a semilunar valve.
 - (iv) Normal systolic and diastolic pressure of humans is 120 and 60 mm Hg respectively

	(i)	(ii)	(iii)	(iv)
(a)	F	F	Т	F
(b)	F	F	Т	Т
(c)	Т	Т	F	Т
(d)	Т	F	F	F

179. The given figure shows an angiogram of the coronary blood vessel. Which one of the followign statements correctly describes, what is being done?

- (a) It is a coronary artery which has a cancerous growth that is being removed
- (b) It is a coronary artery which is blocked by a plaque and the same is being cracked
- (c) It is a coronary vein in which the defective valves are being opened
- (d) It is a coronary vein blocked by a parasite (blood fluke) that is being removed
- 180. Match column I with column II and select the correct option from the codes given below.

	Column I	Column II					
A.	Heart failure	(i)	Heart muscle is	Heart muscle is suddenly damaged by an inadequate blood supply			
B.	Cardiac arrest	(ii)	Chest pain due	Chest pain due to inadequate O2 reaching the heart muscles			
C.	Heart attack	(iii)	Atherosclerosis	Atherosclerosis			
D.	Coronary artery disease (iv) (CAD)		Heart not pumping blood effectively enough to meet the needs of the body				
E.	Angina pectoris	(v)	Heart stops beat	ting			
(a)	A-(iv), B-(v), C-(i), D-((iii), E-(i	ii)	(b)	A-(v), B-(iv), C-(i), D-(iii), E-(ii)		
(c)	A-(iv), B-(v), C-(i), D-(A-(iv), B-(v), C-(i), D-(ii), E-(iii)		(d)	A-(vi), B-(iv), C-(ii), D-(iii), E-(i)		

Date: 21.10.2022

NEET 24 BATCH PHYSICS : PART TEST SET-B ANSWER KEY Topic: FLT

1.	(c)	2.	(d)	3.	(c)	4.	(a)	5.	(b)
6.	(d)	7.	(a)	8.	(a)	9.	(c)	10.	(c)
11.	(b)	12.	(c)	13.	(c)	14.	(d)	15.	(a)
16.	(c)	17.	(c)	18.	(d)	19.	(c)	20.	(a)
21.	(a)	22.	(b)	23.	(c)	24.	(d)	25.	(a)
26.	(b)	27.	(b)	28.	(d)	29.	(b)	30.	(a)
31.	(d)	32.	(d)	33.	(b)	34.	(a)	35.	(b)
36.	(a)	37.	(b)	38.	(a)	39.	(b)	40.	(c)
41.	(a)	42.	(b)	43.	(b)	44.	(a)	45.	(a)

CHEMISTRY : PART TEST SET-B ANSWER KEY Topic: FLT

46.	(c)	47.	(b)	48.	(c)	49.	(c)	50.	(c)
51.	(a)	52.	(c)	53.	(d)	54.	(d)	55.	(d)
56.	(d)	57.	(a)	58.	(d)	59.	(d)	60.	(a)
61.	(c)	62.	(c)	63.	(a)	64.	(c)	65.	(a)
66.	(d)	67.	(b)	68.	(d)	69.	(d)	70.	(d)
71.	(b)	72.	(c)	73.	(b)	74.	(a)	75.	(c)
76.	(d)	77.	(a)	78.	(d)	79.	(a)	80.	(c)
81.	(b)	82.	(c)	83.	(b)	84.	(d)	85.	(d)
86.	(b)	87.	(b)	88.	(d)	89.	(c)	90.	(d)

Date: 21.10.2022

NEET 24 BIOLOGY : FLT

Topics: Plant Kingdom, Morphology, Root Stem, Leaf and Animal Kingdom

Answer Key 91. (b) 92. (d) 93. (d) 94. (d) 95. (c) 96. (b) 97. (b) 98. (b) 99. (b) 100. (d) 101. (d) 102. (c) 103. (b) 104. (c) 105. (c) 106. (a) 107. (c) 108. (a) 109. (d) 110. (a) 111. 112. (a) 113. 114. (a) 115. (d) (a) (b) 116. (b) 117. (d) 118. 119. (d) 120. (a) (c) 121. 122. 123. 124. 125. (b) (b) (c) (d) (b) 129. 126. (a) 127. (c) 128. (e) (a) 130. (c) 131. 132. 133. 134. 135. (b) (d) (c) (a) (c) 136. 137. 138. 139. 140. (a) (c) (a) (a) (a) 141. (b) 142. (c) 143. 144. (a) 145. (b) (c) 146. (b) 147. (b) 148. (d) 149. (a) 150. (a) 151. 152. 153. 154. (d) 155. (c) (c) (a) (c) 158. 159. 160. 156. (c) 157. (b) (d) (b) (a) 161. (b) 162. (b) 163. (c) 164. (c) 165. (c) 170. 166. (b) 167. (d) 168. (a) 169. (a) (b) 171. 172. 173. 174. 175. (c) (d) (d) (d) (a) 176. (b) 177. (c) 178. (d) 179. (b) 180. (a)